
The FEniCS Project:
Automation and

Algorithms for Finite
Element Methods

Robert C. Kirby
The University of Chicago
Sandia Livermore Nat’l Lab

Acknowledgments

Matt Knepley (ANL), Anders Logg (TTI-
C), Kevin Long (SLNL), Ridg Scott
(UC), Andy Terrel (UC)
DOE ECPI Program
SLNL/CSRI

Outline

Motivation/Overview
FEM basis functions: FIAT
Optimizing element matrices: FErari

Motivation

u ·∇u + 1

ρ
∇p − ν∆u = 0

∇ · u = 0

u ·∇u + 1

ρ
∇p − ν∆u = β(T − T0)gk̂

∇ · u = 0
ρcpu ·∇T −∇ · (k∇T) = 0

Incompressible NSE

Boussinesq (heat transfer coupled)

Problems
Each piece is tough
Coupling black boxes?
Changing order of approximation?
Functional versus optimal
More terms: MHD? Viscoelastic?
Inversion?

The Great Chain of FEing
PDE

Weak Form
FEM

Assembly
Solve

Enumerative approach
List all the forms/elements you want
Implement
Hope you don’t need more
Difficult to extend due to:

Cost to implement single form
Cost to make different forms
communicate

Grammatical approach

Specify abstraction for forms/elements
Generate efficient code
Benefits:

Efficiency, Reliability, Integrability,
Extensibility

What do we have?
Parallel solver libraries (e.g. PETSc,
Trilinos)
Emerging technologies:

Sundance, FFC, PETSc
FIAT

Math

Example: FFC

FEniCS Form Compiler (Anders Logg)
Variational form --> DOLFIN code
Generate a mapping from mesh to matrix.
PETSc linear algebra
See also Sundance/Trilinos

FFC Code
 scalar = FiniteElement("Lagrange", "triangle", 1)
 vector = FiniteElement("Lagrange", "triangle", 1, 2)
 v = BasisFunction(scalar) # test function
 u1 = BasisFunction(scalar) # value at next time step
 u0 = Function(scalar) # value at previous time step
 w = Function(vector) # convection
 f = Function(scalar) # source term
 k = Constant() # time step
 c = Constant() # diffusion
 a = v*u1*dx + 0.5*k*(v*w[i]*u1.dx(i)*dx + c*v.dx(i)*u1.dx(i)*dx)
 L = v*u0*dx - 0.5*k*(v*w[i]*u0.dx(i)*dx + c*v.dx(i)*u0.dx(i)*dx) + v*f*dx

Pretty picture

What else do we need?

Generating FE basis functions:

H1, H(div), H(curl), high order
Assembly

Parallel (comes from mesh and algebra)
Optimizing element matrices

High-level view

Elements Forms

Driver

Mesh Solver Vis Etc

General Finite Elements

Underappreciated problem!!
General order: limits family
General spaces: limits order
Need a “representation theory”
This is called...“linear algebra”

What is a finite element?
What is a nodal basis?
How do we compute one?

A constructive approach
to nodal bases (FIAT)

Ciarlet: defining a finite
element

K a domain with p.w. smooth boundary
P a f.d. function space (polynomials)
N a collection of “nodes”

linear mappings from P to reals
span P’

A finite element is a triple (K,P,N):

K: a triangle
P: Quadratic
polynomials
N: evaluation at 6
points

Example: Lagrange

K: a triangle
P:
N: normal component
at edge midpoints

Example: Raviart-
Thomas

(Pk)2 + xPk

Basis for P
Satisfies
Enables interelement continuity
Formulae? (Hierarchical? Rectangular?)

Nodal bases

The nodal basis is a set {ψi}
dim P

i=1

ni (ψj) = δi,j

Computing nodal basis

Computable formulae
Stable
Black box
For , use orthogonal polynomials

Start with “prime basis” {φi}
|P |
i=1

Pk

Change of basis

Columns of inverse are expansion
coefficients of nodal basis
Not as bad as the “real” Vandermonde
matrix
Need code abstractions for functionals

Build Vandermonde matrix Vi,j = ni(φj)

p-refinement
BDFM elements
Arnold-Winther elements
Divergence-free spaces
Can’t use (directly) the orthonormal
spaces!

P != Pk

Constrained Lagrange

K: a triangle
P: Quadratic
polynomials, linear on
bottom edge
N: evaluation at 5 points

K: a triangle

N: normal component
on edges, plus some
others inside

Example: BDFM

+3P = {p ∈ (Pk)d : u · n ∈ Pk−1 (∂K)}

 linear functional

 a prime basis for

Building a prime basis
Suppose we have , with P ⊂ P̄ {!i}

d
i=1

!i : P̄ → R

P = ∩
d
i=1null(!i)

{φ̄i}
|P̄ |
i=1 P̄

Build matrix:
Compute SVD:
Prime basis:

 Bramble-Hilbert (Dupont-Scott)

Building a prime basis

Li,j = !i

(
φ̄j

)

L = ULΣLV
t
L

φj = Vk,j+|P̄ |−|P |φ̄k

Implemenation (FIAT)
Python (C++ coming online)
All polynomials and functionals are
represented as vectors (Riesz Rep Thm)
Building Vandermonde, constraint
matrices is level 3 BLAS
SVD, inversion done by LAPACK

Implementation, cont’d

Supports simplicial elements
Lagrange, BDM, Hermite currently in
place (one class for each does all the
shapes -- see Knepley’s incidence
relations)
Available LGPL (www.fenics.org)

Level 3 BLAS
p = piφi

"(p) = pi"(φi)
R(p)i = pi

R′(")i = "(φi)
"(p) = "ipi

Vi,j = "i,kpj,k

Performance
Time to Instantiate Elements

0.001

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8

Polynomial degree

T
im

e
 (

s
)

Lag Tri Old

Lag Tri New

Lag Tet New

BDM Tri Old

BDM Tri New

BDM Tet New

Performance, cont’d
Time to Tabulate Elements

0.0001

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8

Polynomial Degree

T
im

e
 (

s
)

Lag Tri Old

Lag Tri New

Lag Tet New

BDM Tri Old

BDM Tri New

BDM Tet New

Optimizing form evaluation
When does it matter?

Steady versus unsteady
Linear versus nonlinear
How good is the solver?
Matrix or matrix-free?

Matters most when there is frequent
reconstruction

Local form for Poisson

How fast can we compute, given basis
functions?
How fast can we do action?
Approach should generalize to other
forms!!

Ke
i,j =

∫
e

∇ψi ·∇ψj dx

=

∫
K̂

J−t
(
∇̂ψi

)
· J−t

(
∇̂ψj

)
dx̂

Algorithms for LSM
Method Cost per entry in K

Quadrature O(k^d)

Precomputation d^2

Optimal ???

Precomputing Poisson

Similar for other forms
“Reference element” & “geometry”
Compute K offline at “compile time”

Ki,j,m,m′ =

∫
K̂

∂ψi

∂ξm

∂ψj

∂ξm′

dξ G
e

=

J−tJ−1

|J |

K
e
i,j = Ki,k,m,m′G

e
m,m′

(Ku)e
i = Ki,j,m,m′

(
G

e
m,m′u

e
j

)

Algorithm

For each
Get

For each
Compute

Insert block into global matrix

e

G
e

1 ≤ i, j ≤ |P |

Ki,j : G
e

Goal

Minimize time spent doing all the tensor
contractions (whether for matrix-full or
matrix-free)

Phrase as level 3 BLAS (dense)
Find a lower-flop computation
(sparse)

K for Poisson (k=2,d=2)
3 0 0 -1 1 1 -4 -4 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

-1 0 0 3 1 1 0 0 4 0 -4 -4

1 0 0 1 3 3 -4 0 0 0 0 -4

1 0 0 1 3 3 -4 0 0 0 0 -4

-4 0 0 0 -4 -4 8 4 0 -4 0 4

-4 0 0 0 0 0 4 8 -4 -8 4 0

0 0 0 4 0 0 0 -4 8 4 -8 -4

4 0 0 0 0 0 -4 -8 4 8 -4 0

0 0 0 -4 0 0 0 4 -8 -4 8 4

0 0 0 -4 -4 -4 4 0 -4 0 4 8

ZeroSparse Equal
ColinearLinear Combination

Edit Distance

Symmetry

Only compute triangular part
Dot products go from d^2 to
choose(d+1,2) (G symmetric)
Preserves other dependencies
Infer from AST?

Optimization problem
Given a collection of V of n vectors of
length d
Find a fast algorithm for computing dot
products of all elements of V with any
arbitrary vector of length d
Similar for all multilinear forms & actions
This is compile-time optimization

Comments

V random ==> nd multiply-add pairs
But V comes from algebraic structure
Finding the true optimum is intractible

A topological approach

Impose distance relations on V
d(u,v) small ==> u.g is easy to compute
from v.g
Need relations of general arity (linear
combinations)

Some binary relations

equality (e(u,v) = 0 or d)
colinearity (c(u,v) = 0,1 or d)
Hamming distance
These are all “complexity reducing”
The min over CR-relations is CR

Using binary relations
Assume a CR relation r (WLOG)
Build a graph (V,E)

weight of (u,v) is r(u,v)
Sparse or dense graph

Want a traversal of the graph that is
minimal cost

Minimum spanning tree
Starts from root node
Every node has a parent
Sum of edge weights is minimal over all
spanning trees
Optimal computation under relation r
How good is r?

Code generation
Annotate edges in graph with type of
dependencies
Breadth-first search of MST ==> code
generation
Computes straight-line code

array read/write, multiply & add

Results of Poisson MST

triangles tetrahedra

degree n m nm MAPs

1 6 3 18 9
2 21 3 63 17
3 55 3 165 46

degree n m nm MAPs

1 10 6 60 27
2 55 6 330 101
3 210 6 1260 370

Down to 1-2 flops per entry
Dominant cost is writing the answer!

Timing results

Build versus solve

GMRES/AMG requires three iterations
AMG build/apply dominates run-time
Optimized code still gives overall 5-10%
speedup
Geometric MG? Matrix-free?

Results for Advection

Constant coefficient
Similar reduction in operation count

triangles tetrahedra

degree n m nm MAPs

1 9 2 18 4
2 36 2 72 22
3 100 2 200 59

degree n m nm MAPs

1 16 3 48 9
2 100 3 300 35
3 400 3 1200 189

Variable coefficient
Consider weighted Laplacian

Coefficient projected into FE space
Much more complicated operator!

Rank 5 tensor
“Geometry” is rank 3 (includes w)

aw(v, u) =

∫
Ω

w(x)∇v(x) ·∇u(x)dx

Tensors

A
0

iα =

∫
E

Φα1
(X)

∂Φi1(X)

∂Xα2

∂Φi2(X)

∂Xα3

dX

G
α
e = wα1

det F
′

e

∂Xα2

∂xβ

∂Xα3

∂xβ
= wα1

(
G

L
)(α2,α3)

e

Three approaches

Form “full” G, optimize contractions with
rank three tensors
Partially reduce geometry (optimize this),
densely contract with coefficient
Partially reduce coefficient (optimize
this), densely contract with geometry

Results on tetrahedra
Contracting coefficient first wins
Base costs are 240, 3300, 25200
Much more flops per memory operation

Ge (GL)e first wk first
degree MST additional total MST additional total MST additional total

1 108 6*4 132 27 10*4 67 9 10*6 69
2 1650 6*10 1710 693 55*10 1234 465 55*6 795
3 14334 6*20 14454 7021 210*20 11221 7728 210*6 8988

Relations of general arity

e.g. Linear combinations t(u,v,w) = 2 or d
Can modify MST algorithm

Isn’t a tree (hypertree)
Finding true optimum NP-hard?

Ongoing work
Algorithms:

How quickly can we identify
hyperplanar relations?
What’s the extension of the MST

Experiments
Matrix action (preconditioning?)

Conclusion

Automation: Generality, Efficiency,
Reliability, etc etc etc
Requires new mathematical applications,
interpretations of existing mathematics.

